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ABSTRACT

The transient asan-square respense of a nonlinear single-degree-
of frecdom mechanical system to nonstationary random excitation char-
acterized by the product of an envelope function and a stationary
Gaussian random process is deterwined by the eguivalent linearizstion
technique. A unit step envelope function is considered in conjunction
with both correlated and white noise with zero mean.

It has been showm that for white nofse modulated by a unit Step
function, the transient mean-square response never exceeds the stationary
response. However, the mean-square response to correlated noise
wodulated by a unit step function may exceed its stationary value.

The analysis is extanded to the multi-degree-of-freedom nonlinear

system for the case of mutually uncorrelated noise.




CHAPTER 1

INTRODUCTION

The transient mean-square responte of & linear single-dagree-of
frecdom mechanical sys’om to certain types of nomstationary random
axcitation has been studied by several authors [1, 2, 3, 4]. The non-
stationary input was taken in the form of a product of 2 will-defined
envelope function, A(t) and a stationary Goussian aoise with 2ero meam,
n(t).

T. K. Caughey and H. J. Stumpf [1] have examined the case in mich
the envelope funciizn A(t) was a unit step function and n{:) was assumed
to b2 either virite noise or hiroad-band noise whose power spectral den-
sity has no shary peaks. Results of their analysis were applied tc the
determivation of the structural recponse to earthquake ground mo*ion.

V. V. Bz auin {2]) his detarmined the mean-square response of a limear
structure wpresented by a second order differentiai equation when st
structure 15 subject to earthquake 2xci.ation. In his analys:s, he
~onsidered the ground acceleratic: to be characterizad by the product
of an exponentially decaying harwonic correlation function and an
envelope function, A(t) = Aect,

in a racent paper [37, R. L. Barmoski and J. R. Maurer have forsm-
lated the time varying m:.-square response of a linear single-degree-
of-freedom system in terms or the system {requency response {unction
snd the generaiized spectral density function of the fnput excitation.

They consid.red the envelope functicn to b efther the unit step function




(2]

or a rectongular step fumction. L. L. Bucclarelli and C. Kuo {4] nave
recontly obtained an spproximete exprossion for the mosn-sQuare respense
to excitatior characierized by 2 gemers] envelope function subject omiy
to the restriction that the envelope function is slewly varying. Their
work 3150 gave on estimated mexinm value of the mean-squure respemse.
I all the above studies, the systsw traated were limeor.

To date, the prodiem of response of & nonlinsar system to aen-
stationcry random excitation has bee: sentioned in only one place.
There, R. H. Toland, C. Y. Yang, and . Hsu [S] enployed a randse walk
model to deterwine system respomse tc statiomary Geussiam white noise.
The extansion to the monstaticmery case was discussed, but mot carried '
through to coapietion. There are meny systems whose mstions ave
charscterized by nomiiccar differential equations, particulariy whee
the motions are large. It is the purpose of this study to preseat an
approximate solution t0 the tramsient mean-square respomse of a simple
aoeliczar system to a nonstationary random excitation. Only sysisas
with geometric nontinearities (rather than metarials nonlinearities)
involved are considered and the nonlinear differential aquation fs
Tinearized by an equivalent linsarization tethwnique. A1} computation
for ctiaining the mean-square response of the system is straightforward.
However, it is not cenerally possible to cbtain a closed form soiuvtion
of the mean-square response and the equation has to be solved rumerically.
First a single-desyrac-of-freedom systom is treated in Chapter II sad than
a multidegree-of -fiedom system is discussed for various special cases.

Pesults of -he presant investigution could, as an spproximation,
be applied to reszomse determination of thin elastic plates and shells
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{regarded as singie degree of freedom systems for any given mode)
when these systess are subject to pressure fields that excite large
amplitude oscillations. Jet engine scund pressures would be one

example of such a pressure field.
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CHAPTER II

A SINGLE-DEGREE-QF-FREEDOM NONLINEAR SYSTEM

2.1 Statement of the Problem

Consider a 1ightly damped single-degree-of-freedom mechanical
system subjected to a random excitation and governed by the equation
Ft) + 20 3(8) + o?_(¥(t) + g(y)) = £(t) (2-1)

where
r = fraction of critical damping

w, = natural frequency of the corresponding linear system

" 2k +1
g{y) 'kﬂ‘uky uk > 0 (2-2)

The nonstationary random excitation f(t) is expressed by
f(t) = A(t)n(t) (2-3)

where A(t) 15 a well-defined envelope function and n(t) is a Gaussian
stationary random process with zero mean and autocorrelation function
Rn(r).

We are to determine the mean-square response E{yz(t)] to an
input f(t) when the envelope functions are a unit step function and

exponential function, respectively, {.e.,

A(t) = u(t) (2-4)

M
A{t) =1£1 Aiexp(-cit)u(t) {2-5)
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and n(t) has the following autocorrelation functions

Rn(r) = anoé(r) (2-6)

R, (1) = Koexp(-alrl )cosBt (2-7}

where u(t) is a unit step function and 6(1) is the Dirac delta function.
Note that if we let all A; be zero except for Ax =] and c; = 0, Eq. (2-5)
reduces to Eq. (2-4).

2.2 Response Formulation

Although varfous methods can be applied to determine the response
of nonlinear systems, the equivalent linearization technique will be
used here. This technique was developed by Krylov and Bogoliuvov
for the treatment of nonlinear systems under deterministic excitations,
and then R. C. Booton [6] and T. K. Caughey [7] applied this technique
to problems of random vibrations.

We assume that an approximate solution to Eq. (2-1) can be obtained

from the linearized equation

y+ ZSe} + w:‘:y = f(t) (2-8)

where Be is the equivalent linear damping coefficient and mz is the
equivalent linear stiffness. The error "e" due to linearization is
given by the difference between Egs. (2-1) and (2-8), i.e.,

e = 2(c, - 803 + (uf - WD)y + gly)l (2-)

The variables Be and wg are selected so as to make the mean-square

errov E{ezl a minimm. The minimization of E[eZ] require that:
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.a.g.[gﬁ =z ()
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Substitution of Eq. (2-9) into Egs. (2-10) and (2-11) gives

2
3—5%:—1 = -8(zw -8 )E0Y] - (s - WP)EDYY]

- 4E[yg(y) kel = 0

2
i%-l = -8(gw -8, )Elyy] - Z(wﬁ - wﬁ)mzl

a(wb

- 2[ygly)J’ = 0

Solving for g, and “2 from Eqs. (2-12) and (2-13), we have

290 r® N
- 2 E[y“IE - EfyylE
28, 2mn+ww1}1—m-w

" Ely*ED] - (ELwD

.2 * *
2.2+ 2 ECIELyaly)] - ELELoly)]
we = Wy + wy

ELCIEGC] - (ELE

From Eqs. (2-12) and (2-13),

2 5 21

Bg

2er. 2
9 E!e l = ZE[.YZ]>O

B(me)

(2-10)

(2-12)

(2-13)

(2-14)

{2-15)

(2-16)

(2-17)
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N4 [ 2]
and
aE[e’] 3_2!5_[%.2_; ] (3_251‘5%_)2 = 16(EL LA - (EyD?)
3B 9lwg)”  38,3(uwp)
= 16det(K) (2-19)

where det(K) is the determinant of the matrix of covariances. Since
the upper bound for the nonstationary cross-covariance E{yy] is given

by the inequality [8],

(ELyy1)? < Ely2JELy2) (2-20)

then,

azE e2 aZE e2 azE e2 2
From Eqs. (2-16), (2-17), and (2-21), it can be seen that the conditions
(2-14) and (2-15) truly give a minimum E[QZ].

In order to express the right hand side of Eqs. (2-14) and (2-15)
in terms of E[y’], E[}°] and E[yy], it is necessary to know the prob-
ability density function p{y,y). In generai, houever, p{y.y) is not
known. If the input is Geussian and the nonlinearities of the system
are small, then the response of the iinearized equation (2-8) is alzo
Gaussian. Therefore, the assumption is made that the nrobability density
function p(y,y) is Gaussian with covariances to be determined.
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Before constructing the probability density function, the
ensemble average of y and y is calculated by use of Duhamel's integral.
Assuming that the system is at rest initially, we have the solution of

Eq. (2-8) to be
t

y{t) = f h{t-t)f(t)dr (2-22)
0

vhere h(t) is the impulse response of the system defined by

e-Bet
h(t) = oy (simdt)u(t) ' (2-23)
and
wf=of -8 (2-20)

The ensemble averzge of y is obtained by taking the enssmble average
of Eq. (2-22).

t
Efy] L h(t-T)ELF(t) Jdr (2-25)
Since we assumed that E[f(t)] = 0, then
Elyl=¢ (2-26)
Similarly, the ensemble average of y is obtained by
t
Ely] = £5§€ h(t-0)E[f(t)Idc =0 (2-27)

Because of Eqs. (2-26) and (2-27), the assumed Gaussian probebility
density function ply,y) takes the form:
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| [9]
.
i‘,
; 3) = —L exp(-ay? + 2byy - oy’ 2-20)
L ply,y) oolaeti0)E exp(-ay© + 2byy - cy°) (
; , where
! a = E[y21/(2det(X))
b = E[yyi/(2det(K))
¢ = E[y“)/(2det(K))
det(K) = EIYZIELY?] - (EDvyD)®
Expression for E[yg{y)] and E[yg(y}] are cbtained in the Appendix and
are shown to be [9],
Elyg(y)] = } J ye(y)ply.¥idydy
N
s T u’l & + u!(z[yz])kfl (z.n)
‘ k=) «!
E 8 [ ]
” Elya(y)] = f f ys(y)oly.y)dydy
]
. ¥ ut % ¢+ 1 !EDZ})REM] (2031)
k=1 %1
Substituting Eqs. (2-30) and (2-31) into Eqs. (2-14) and (2-15), we have
l; 23‘ b Zm" (2-32)
] :
mﬁ - m: 1 +k2‘.1 My . :;' ! (E[,yz}}k (2-33)
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It 13 interesting to observe that the above equivalent linear diwping
28, and stiffness ol are identical to those found for a stationary
process in which case E[yy] is equal to zero and Eqs. (2-14) and (2-15)

asre simplified as

®

i 2§
28, = 2, +ul J-Y-ﬂgll

Ey]
(2-%)
2. 2 2 E[ygly)
u‘-u"+u“ E[y]l

If instead the nonlinearity is involved only in the velocity term such
as g(y). we can easily show that the equivalent linear damping zad si¢iff-
ness for a nonstationary process are the same as those for a statiorary
process.

The mean-square response E[yz] at any instant of time, t, is
obtained from the computation of the expected walue of (,y(t)}z over
the ensesble of the response. From Eq. (2-22),

t,t
Ely?] = [ § h(t-1)h(t-T)ELF(x) (1) Jdrdr {2-35)
00

Since A(t) fs well-defined function and n(t) is stationary,

ELF()f(1)] = A(x)A(T)EIn(T)n(7)]
= MDA(TIK {7-1) (2-36)

where Rn(t-r') is the autocorralation function of n(t). Substitution
of €qs. (2-23), (2-32) and (2-36) into Eq. (2-35) leads to




(n]

tst
(= | | MetNtnElf e Je
W
4
00
' $ ' ‘2.37)
x  sinmg{t-1)A{TIA(TIR (r-T)dudy
Fron Eqs. (2-24), {2-32), and (2-33), uj becomes
N
Lol f1e 1oy BEUL et - {2-38)

kel 2°kd

¥ith Rn(‘t) defined by Eqs. (2-5) or (2-7), an A(t) defined by Ecs. (2-4)
op {2-5), £gs. (2-37) and (2-38) becomw simultaneous nonlinear algebraic
aquetions for E{yzl.

Altzrmatively, Eq. (2-37) can be expressed in tarms of the power
spectral density #(w) of n(t). Since the autocorrelation fumction
R,(T—-::} is given by

[

Rh('r—:t) = { m)cm(r«%w (2-39)
9
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Then, substituting Eq. (2-39) into Eq. (2-37) and changing the order
of integration, we hawe

- t,t
E[yzl = [ ’-‘%’- f [ exp{-;un(Zt-rw}sima(t-t)
0 ¢ 0o

x s (t-T)ALT)A(T cosw(v- ) drdvd (2-40)
2.3 Response to Shaped White Noise

If the input is assumed to be white noise, then substitution of
£5. (2-6) into Eq. (2-37) leads to

ely’J = 1’-;-

t
> J{m - 2w, (t-1) A ()5 indu ( tr) e (2-81)
L7
d .

0

2.3.1 Unit Step Envelope Function

Lat us first corsider the case in which the envi:lope function is
defined by £q. (2-4). By performing the integration of Eq. (2-41), we
obtatn

e 'xo ¢ 2
Ely*] » -5 cxp{-!m“(tvr)}sin ud(t-r)ﬂr

Yq
0
22
w <20s t 2
n '-——-—29'2——7- [1-e “n (1 + ——22"4— Siﬂzh)‘t
4&%“ Wy * ”d) g

2 %:'— sin2e,t)] {(2-42)




[13]

Employing Eq. (2-38), Eg. (2-42) becomes a noniinear algebraic
equation for E[yzl since mﬁ is a function of E[yZ] in Eq. (2-38). This
type of equiation generally has more than one solution. !owever, from
physica) considerations the cesired solution will be that one close to
the solution of the corresponding linear system because 7nly a weakly
nonlirear system is beirng considered. Since the general procedure for
solving the nonlinear ilgebraic equation is not availibie, we shall
use Newton's method of tangents to cbtain an approximate solution at
instantaneous values of time, t, and then iterate. The selution by
Newton's method somotimes does not converge if a poor initial value is
cyosen. However, since the mean-square response of the linear system
E[yﬁ] is assumed to be close to that of the nonlinear system, E[ygl ie.
suitable for use as the initigl trial solution for an {teration scheme,
Throughout the present study, this iteration scheme together with
Newton's method is used for obtaining an approximete soiution.

As a numerical example, let us consider the simplest case, {.e.,

gly) = uy3 (2-43)

For various values of u znd damping coefficient z, E[yz] is
computed and the normailized plots are shown in Figure 1 through 3.
The normalization factor is determined by the stationary mean-square
response of linear system

E{ygls - wxommﬁ (2-43)

The perameter u is chosen in such a manner that given u the stationary

mean-square respohse reaches 40 percent, 60 percent and 80 percent of
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[14]

E[yi]s. If the damping is small, Eq. (2-42) can be approximated by

ELy?1 = Ely2), —————?— (2-45)
ly“]
from which the following approximate solution is obtained.

-2t
Ely’1= g (01 + 12020 - 2 M)l {2-%6)

In what follows, let us show that the transient mean-squave
response for both linear and nonlinear systems does not exceed the

stationary mean-square response to white noise. That {s,

Etyg]s > E[yf,]

(2-47)
Elyl, > Ely)
From Eq. (2-42), we have
r4 Ko ZZ;m Cra,Twm2 "2, Syl
E = U+( ) + (- (-2
y°] ;c-m;;g (“’d) (“‘d)
X sfn(&odt - 8)] (2-48)

where
-1,
0 = tan (T‘;d-)

Since

Tw 14 Tw
R (;j‘-)z > u{f)z + (—%'1)4]*
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anu

-1 < sin(2u,t-8) < 1

then

l-e'zc”nt[h(-?j'-)z 4%%:)2 + (?::‘)4 sin(b‘t-e)] <1 {2-49)

The equality holds for t » =,
Therefore,

EEv?] < oK 7Agud(193uEly]) . (2-50)

Solving for E[yZ], it s concluded that

K
2 1 0 v} 2
E T +12 <1 } = E
[y°] < [:M {[ + (_-34?;1» M) } ly ]s o

For linear systems, substitution of u = 0 into Eq. (2-50) Teads to the
first equation of (2-47).

2.3.2 Exponential Envelove Function

I1f a white noise is modulated by the exponential envelope function
described by Eq. {2-5), then Eq. (2-41) becomes

2 1"‘;o ¢ 2
Ely“] = —3 exp[-an(t-r)]sin ud(t-r)
“d 0
) M

x1l fi 15{ Ai»\jexp[-( C.‘*Cj)‘t]d‘t {2-51)

NOH KAAe ot 22
e ).\
-z 3 o [emijt-(h—a?ﬂnzudt
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s M1 g0 4t (2-51)
ﬂd mt.d

where
Xij = Udn -}(C’ + Cj) (2'52)

Consider the special caze in which the envelope function and

nonlinear term g(y) are the following:

At) = Ae~Ct
3 (2-53)
gly) = w

Then, £q. (2-51) {s simplified to the form

=K _,2 247 2

2 (V) e 2(z-8)t 2{z-6 2,.2 2:\¢
Efv®] = — — e -1+—-‘§-—-§-sin(x-«:)

Y s &2l S 2

’ (2 ;g)i' sin2(x2-c2)e] (2-54)
X -
where

X% = 1+ 2Ely?]
T tat (2-55)
§ = c/u“

Eouation (2-52) was sclved by a numerical iterstion method described
in Chapter 2.3.1, and normalized plots are showe in Figure 4 and 5.
The normatization factor is chosen im this case to be

o = w M/hcid (2-56)

which is the stationary mesn-square response for the case of ¢ = 0
and u=0. Two cases 8§ = 20 and § = 37 arw {1lustrated in those figures
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avd the resuits show that for large &, i.e., rapidly decreasing
srplitude of the input, the effect of the parameter u is insignificant.
1f ¢, 8§ &1, Eq. (2-54) can be expressed approximately by

E[y"]~ =;’—
% (-8)(1+3uELy*])

Solving for E[yZ].

20 L % 28 -2y
B ) g (D= (™0 - (2-57)
c-

is obtained.

2.4 Response to Shaped Correlated Noise
If the input noise is assumed to be correlated as the damped

harmenic form of Eq. {2-7), then Eq. (2-37) becomes
t

K e-2Cupt

2 o L} 3 L

Ely] = ——— |exo[w, (141)-a| r-1] JA(x)A(1)
g

0
Situg(t-1)stmy(t-1)cosB(-1)dren (2-58)

2.4.1 Unit Step Envelope Function
Substituting Eq. (2-4) into Eq. (2-58), we find that Eq. (2-58)

takes the form ,
X e"zi"“rst : '
2 0
E[y“] = — exp[(cmn—a)ﬂsimd(tot) I exp[(wnﬂ:h]
[\
d

b l

0
4
x Sfmd(t-‘t)CO‘.SB(‘l'-'l.’)dT dr + iexo[(cwnm);]simd(t-:c)
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(et
x 1 { expL{zu, -a)lsinug(t-t)cosB(t-1)dr }d%] (2-59)

The double integral in Eq. (2-59) may be evaluated after some tedious
algebra to give,

K 8
EYY] = 3 20t g (u)1y(t) (2-60)
wy =1

where

0, = eP15(R;-R ) /2R,

¢ (2-61)
Q, = " (2;R,#2,R, }/2R;R,

. Py (Ry+R5) ) py(Ry#R,)

n
3 ) R R,
P i B i
4 TRE, )
P2
Qs"ag
Q1




{i9]

- [eP2t

R3(pzsin92t+92cosnzt)]/2R3R4

T, = (1-eP3%)/2p, + poeP3t/am, -

pat

T5 = -eplt(p]sin91 +p]cosﬂlt)/2R1+p]/2R] -

(Q?_sinn,.t--p]cosfz‘t)/ZRZ-(stindet-p]cosmdt)IZR2

i eplt( sinQ, t+Q,cos ,€)/2R, -
PySIML SRS 4 2
% (p]siandt+92c052mdt)/2R2
. T; = ep]t[(n1R2+92R])sin92tfp](R1-R2)cosnzt]/2R]R2 -
(2-51}
[n‘stindet-p](chos&odt-kl)}IZP.]R2 cont'é
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[2n]

= Mt - -
Tg=e 1 (pxsimztm]cosnzt)IZRl QZIZR2
(p]cosmdtm]cosZmdt)/ZR] -

ep1t(p]sinnzt - 2cosugt)2R,

Py = Cupma
Pp = Twpba
Py =P * Py
Q-l = md'B
92 = u)d"'B
N’ﬁ*#
%‘ﬁ*%
?
%'Pg*%
2 2 (2-61)
Ry =Py + 9y cont'd

Rs = (p]"'Pz)z*‘ms

From Eqs. (2-60) and (2-61) it is seen that the mean-square
response depends upon an interrelationship which involves the system
damping g, the corresponding linear system matural circular frequency
Wy » the decaying constant a and the frequency 8 of the correlation functiocr

Petermining the solution El'yz] requires much algebra even for the simplest
case of gly) = uys.
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When the input is white noise, only the value of damping of the
system affects how quickly stationarity is attained as seen in
Section 2.4, However, for a corirelatad noise input, the time veguired
for the response to reach a stationary valwe is influenced not only
by the system damping coefficient z but siso by the decay constant o
of the innut noise. MNormalized plots for g(y) 7{43 are shown in
Figures 6 through 8 for various valiue of a with fixed 8. The normali-
zation factor was chosen as the stationary mean-square response E[yﬁ]s
of the Tinear system which can be cbtained by lettingt + o and u =0
in Eq. (2-60). Instead of finding the stationary mean-square value
from Eq. (2-60), we obtain it from

2 ® dw
£ = (2-62
[Yo]s f[o #lu) (m;‘:-wzh(anw)Z )

where ¢(w) 1s the one-sided power spectral density of n(t):

o(w) ') J IO (2-63)
T Prw)? o)’

By contour inteqration, E[y2] < becomes

ko' | a40- e a0-dhe,

E[y], = -2 w— + L
o8 aah |- DD s a2
4C
—gE | - 2-64
o' {C54D%) ] 0 (2-6)
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vhere

2y-2c2428' (1-g2)

Ay = a'"+8'
B, = 2tL(1t2) g
A, = a'Zsp Bar-2gl.28 100y
B, = 2t[(1-z2)-p']

¢ = a2 ) 2450230 24p(p2 02 (202.9)

D 4a'g’(i-2co+q'2-p'2) (2-65)
a' u/wn
g' B/mn

This was done for checking purposes. Since the normalized mean-square
value must asymptotically approach unity for large t, we can check the
results of Eq. (2-60) if we let u=0. Results show that as a decreases,
j.e., the power specfra} density has a sharp peak at some frequency,
then the transient response tends to exceed the stationavy value.
Another interesting result is that the nonlinear response becomes
greater than the corresponding linear response under certein conditions
even if the system has hardening spring-type nonlinearity. One such
example is shown in Figure 12.

2.4.2 Exponential Envelope Function

For the exponential envelope function expressed by Eq. (2-5),
Eq. (2-58) s of the form

E[yzl = _9_2__@__ sinmd(t-r)s3nud(t-;)cose(r-4) X




" " [] ) ]
I jxl exp[(cmn-ci)t+(gmn-cj)t-a|1-rl]deT

i{=

£
Koe'zcwnt {- M . .
T | DAy [emllauoneyielstnage-n) x

Wy [_

Cae M R

0

T
{ j exp[(cwn+a«c1);]sinwd(t-r)cosﬁ(r-;)dt d; +
Lo

R
[V o B 4

t
Ailt.j l exp[(cmn+a-cj);]sinmd(t-;) X

¢ (2-66)
t

I'exp(cwh~a—ci)r sinwd(t-r)coss(r-;)dr &;
T

After some tedious algebra, we have

K e~205t  § oy

2 0 -
Ely°] = e I b AiA
Wy i=] j=?

8
15l (2-57)

where Qijk and Tijk are defined in Eq. {2-61). However, Pys Py, &nd
p3 are replaced by the following.
i Pyi = Sty

D]j = cwn"‘a"Cj

- Ppj = Bupta-Cy
P33 = P14*Pyy (2-68)
p3j = p1j+p2j
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Also all other Ql”'”QB’ Tl"“‘Ta’ R].....Rs are denoted by Q"j,....
wsij' Equations (2-67) and (2-38) may be solved simultaneously for
ELy%).

As a numerical example, the simplest case M=l in Eq. (2-8), that
is, A(t)=e"°t 15 shown. In Figures 9 through 11, the normalized mean-
square value is plotted for various value of a. Here, a, B and
normalization factor C) ave the same as those used in the previous
Chapter 2.4.1. The exponential decay constant c of the envelope function
is taken as ¢ = If.
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CHAPTER 111

MUL TIDEGREE-OF-FREEDDM NONLINEAR SYSTEN

3.7 Staterent of the Problem

How, consider the H-degree-of-freedom system governed by
TR o PO § 2y Ty, = F.{t) i%1,2,....N (3-1)
M W Rt LM 4 S Erees

Cr, this may he written a3
- by 3V ‘
31*251Niyi + '3'9‘;' * fi(t) (3-2}

shere ¥V is the total potential anergy per unit mass expressed by

N i N
X 2.2 2222
V34 2 oyo+ 8 1 1 y (3-3)
k-] kyk kz} ‘1’] wkwk kyj
The forcing function fi(t) is assumed to be represented by a product
of a well-defined envelope function Ai(t) and the uncorrelated stationary

pardom process ni(t) with zero mean, that is,

£,(t) = A {thn, (t) (3-4)
Elny(t3] = 0 (3-5)
E{ni(t)nj(t)] = 0 1$3 (3-6)

Furthermore it is assumed that ni(t) has a power spectral density ¢i(m)
which is a smooth function of w, having no sharp peaks. The stationary
response of the system of Eq. (3-1) to uncorrleated white randew processe:
has been studied by Caughey [7]. We are to determine the approximate mea
square response Ey%(t)] subject to the assumptions given in Eqs. {3-4) th
(3-6) by equivalent linearization technique. The envelope functions As(t
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considered in this Chapter are the unit step function and the exponentia’

function, t.e.,
A(t) = u(t) (3-7)

A (t) = AeCet (3-8)

3.2 Response Formulation

Let us assume that an approximate solutfon to Eq. (3-1) can be
obtained from the 1inear'zed equation

;i*zeie;imfeyi * fi(‘i) (3-9)

where & is the equivalent linear desping coeffictent and uf. is the

equivalent iinear stiffness. Then the error caused by this linearizatio
is obtained from

) 2 2\ _ 3
& {t) = 2equyByolyyHugupelyy gy (3-10)
where
NN
2222
U=t £ I wlulyly (3-11)
51 ke ST

Mintmizing E{e1] with respect to £, and Wigs WE obtain

=Ly 360y, Y ayi1-Ely v, 3Ly, W ayi]

(3-72)
ELy2ELy 21 (ELy 102

2o ™ Zqugty

2 2+EE’;$15[¥1 /311] ELY{YQEB,, /3y1]

L)

e ELY2TELYE1-(E Ly 3, )7 (3.13)
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It is easy to show that the conditions given by Egs. (3-12) and (3-13)
vield the true minimum of E!_'sef] if we apply the same argument used in
Chapter 2.2.

In order to express the right hand side of Eqs. (3-12) and (3-13)
in terms of the mean-square of the displacement and the velocity, we
must know the joint probability density function p{yy, ¥pu -.o¥ys 91,
5'2...,.9"). Since the inputs f.(t) are Gaussian and the nontinearities
of the system are assumed to be small, the outputs of the linearized
system are also assumed to be Gaussfan. The displacement and the
velocity of the i-th mode are:

t
y4(8) f hy (e (v)ex (3-14)
0
. hy (t-1)
yi{t) = | —5— f (1)dr (3-15)
where
) Q-Biet )
h,!(t, 5 o g (simidt)u(t) (3-16)
wig = Uietle (3-17)
t
E[yi] = I hi(t-T)E[yi(T)]d‘l’ = 0 (3-18)
0
Simitarly,

Ely,] = 0 (3-19)
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Mext, iet us find the covariances E(yi(t)yj(t)] and E[yi(t)§j(t)}.

t .t
Hhuhﬁﬂlsf{h#bﬂ%uéwﬁﬂﬂghnh& (3-20)
V

since ?i(t) and fj(t) are uncorreiated, for i # j, i.e.,

E[ff(t)fj(t)l > Ai(t)ﬁj(t)E[ﬂ;‘(t)ﬂj(t}] =0 i} (3-21)

it is concluded that

E[yi(t)yj(t)] =0 1#d (3-22)
Similarily, we can show that
tet 2h (t".) ] ]
Ely;(t)y,(¢)] = ( J hy(t-1) -JWT— ELF, (x)f,(c)jdedr = 0
6 G {3-23)

The displacenents and velocities between different modes are mutually

w:corvelated. Therefore, the covariance matrix becomes:

Evil Eyyd o ... 0 0
Ely,y] E¥1 o L.l 0 0
n 0 EDy3) Elyg¥,) ..... 0 0
ol 0 Elyd,] EL 0 0
0 0 5 0 ... Elyil  Elyyhy)
o 0 6 0 ... Elygy]  EDVE)
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For the covariance matrix expressed by Eq. (3-22), the 24-fold
. prebability density function is given by

L ] [ ] E ) N »
p(.Y} ’.Yzo RN Y Y1 WWpr.. -.Y") :RE] pk(’k”k) {3-25)

where pk(yk,_;'k) is the probability density function associated with
the k-th mode defined by

. ] 2 . .2
Peliey) = i exp{-3,Y by Yi-ck) (3-26)

det(K,) = ELy2IELYE)- (ELy, 5, 2

¢

% Ely?)

A & * Zdet KT

:

% Etyk.yk]

* TR, ) (3-27)
EL72

i 2&1(2 )

1

g ; Using Eqs. (3-25) and (3-26), E[y1 3 ] and E[_vi ] can be evaluated as
f-’ § AL ’1

S wa [ “ o M

y : ELy; 7y oy, { x Isq W, kt Py (¥, My, a9,

H ] 0D

E ‘ . 2X-fold

‘fx 3 ') = m [y2] { E E{ ]+° 2

: i | kel WELTD

g kfl

»

= E[y]{z 2ery2 T2y ])
wyELy} GECYE P 2uELy?] (3-28)

T
¥ h" .

V' hedls

=
£ 25

. <.
ST g, . - - - e gl
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Similarly,
E[& iii. = ) .“ ../2!1. : )d d’
i 3’1 ----- ¥4 ayi - }Ps \.Yk-’k Y %Yy
M-fold
]
- ofelyyiy] (2 GELGD + afeliD (3-29)

Substituting Eqs. (2-28) and (3-29) into Egs. (3-12) and (3-13), we
obtl‘ln,

ZB,e = 2';1“"[ (3‘”)
N
o2, - minﬂ,( L ufEl] ¢ 2.%e0y31)] (3-31)

These results are the same as the equivalent linear damping and
stiffness for the stationmary processes.

In this Chapter, the mean-square response is formulated by use
of Eq. (2-40). The mean-sauare response of the i-th mode is given by,

2 ‘1(“) trt '
E[y1] =~ exp {-cimi(Zt--r-r) simid(t-r) X
o M 9%

simog 4(t-0)A, (1), () cosulr=1 )drdrdu (3-32)

whe:s ¢ is defined by Egs. (3-17). Now by substitution of Eqs. (3-37)

and (3-31} i *o "3. {3-17), wfd is expressed as follows:
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P A, T N OTEN,

N
of * oii-e] + W oED] + 2] (3-33)

; 3.2.1 Unit Step Envelope Function

Substituting Eq. {3-7) into Eq. {3-32) and integrating, Eq. (3-32)
reduces to

ELy?] = I 0 () 1 () | %K, (0, ) o (3-24)
0

where

~2ngept  Tawy -2t o

i(1 (w,t) = 14e (1+ u-“—,;; sinZwMt)-te sin wiqt X

22 2. 2
Giwg-ws stw ~G.wet Gyt
{ 11 id )-2e 1”(t;:osm t+ o PP, t) x
id Wig id
Yid

= sinug ytsinwt (3-35)

I# () |? =

1
*232

(3-36)
(g s (e,

Since o, (w) has bean assumed to be a smooth function of w, having no

[P

sharp peaks, and if g, is small, then the integral of Eq. (3-34) can
. he evaluated approximetely by [1]¢

2;%1»3

- - - <

blog) o 2yt 2

2 4™

PR 31 sin
USTHCHAL

“id
(3-37)
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If 61(m) is qiven and Eqs. (3-31) and (3-33) are substituted into
Eq. (3-37), we have N simultaneous nonlinear aigebraic equations for
E[yf] (i =1, 2,...., N). These can be solved numerically by the
Newton-Raphson method.

Kow consider the particular case in which ni(t) is white noise.
1f we denote ¢i(w) = constant = X, Eq. (3-33) becomes

52 2
20w, t Ve () Liw
E[yg] -——35—2— {1-e i (1 ——%—i-sinzmidt+ 61—1 sinZwidt)]
Az 04050 ig id
(3-38)

Let us now show that the transient mean-square response E[y?} does
not exceed the stationary mean-square response E[yf]s if ni(t) is white

noise. The stationary mean-square response is obtained by letting t + =,
24 7K
Elyils P (3-39)
i1 e

Substituting Eq. (3-31) into Eq. (3-39), we find:

N
Ely3], {1+ =z oELy21 2 D10 - ;;’3% 0 (3-40)
*§9%

Using Eq. (2-47), we have the following fnequality:

2 < K
S L — (3-41)
%1%e

Substituting Eq. (3-31) into Eq. {3-41) and rearranging the terws we
obtain
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ELY3] (v z] " E[yk]+2m,‘€{yi])} - ;——'55 <o (3-42)
549y

After eliminating nK/A;iw? from Eqs. (3-40) and (3-42) and after some

manipulation,

(ELv§1-ELy]T, ){1+2wi[2 W (ELy HELYEI )] + u z wks[y N

E[_Y-!] { 2 “’k(E[yk] ‘E[.y ])} (3"43)
Suppose
2 2
ELv$] 2 Efy{] (3-44)

Equation (3-44) implies
T RENZELL) 2 0 (3-45)
i Sl S S

Then the right hand side of the inequality (3-43) is negative so the
left hand side must be negative, too.

(ELy{1-EDy3],) < 0

This is a contradiction of Eq. (3-44).

Hence,

ELy] < ELyE), (3-46)

Thus, it has been proven that if n{(t) is white noise and the envelope
function is the unit step function, then the transient mean-square

respense does not exceed the stationary mean-square response.
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3.2.2 Exponential Envelope Functicn

For the exponential envelope function Ai(t) = e'cit, Eq. (3-32)

now becomes, after double integration,

E{_y,'?(t)] = [ ¢i(w)|HiA(w)|2Ni(m,t)dm (3-47)
0
where
2,2
. r.-w; +w
W (w,t) = e'2°it{1+xl(t)+xz(t)[—'—‘—u‘7d—]
id

[} N
-2x3(t)cos t-2A4(t) B;; sinwt}

= amorst "

-2r.t . 2

Aplt) = e itsin%u,  t (3-48)

r.
A3(t) 7 e"zrit(COSmidt+ Bl_ sinwidt)

id
e omTites
Yy " 54947y
2 1
[Hy () | =
A (w? )2 (2r )2
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If <4 is either the same order of magnitude as gqwy or smaller, then
the integration of Eq. (3-47) may be approximated by the following

expression:
2,2
s ( wi A1)
E[yf(t)] = i id ' i e-2c1t
“2rit,,, M "f 2
x [1-e “"17(1+ J-G sinwidt*rz ;g;- sin widt)] {3-49)

Letting c; + 0, Eq. (3-49) reduces to £q. (3-38).
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CHAPTER IV

CONCLUSIONS

In Chapter II, the time varying mean-square response of a non-
1inear single-degree-of-freedom mechanical system to nonstationary
random excitation characterized by the product of an envelope function
and a stationary Gaussian random process has been considered. A unit
step envelope function and an exponential envelope function are consi-
dered in conjunction with both correlated and white noise with zero
mean. The nonlinear governing equation was linearized by the method of
equivalent linearization.

For the nonstationary process, it has been shown that the equi-
valent linear damping coefficient and the equivaient linear stiffness
for the system with nonlinearities involved only in displacements or
only in velocities are the same as those for the stationary process.

The mean-square response depends upon the coefficients of the
system equation, the shape of the envelope function, and the parameters
of the autocorrelation of the process n(t). It was proved that for
white neise modulated by a unit step function, the transient mean-square
response never exceeds the stationary response. However, the mean-square
response to correlated noise modulated 2y a unit step function may
exceed its stationary value, especially when the power spectral density
of the process n(t) has a sharp peak, and its maximum value becomes

several times the statignary value.
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It has 2150 been shown that the mean-square response of the
system with cubic hardening spring-type nonlinearity may be greater
than the corresponding 1inear system response under certain conditions.

In Chapter III, the analysis has been extended to the N-degree-of-

freedom noniinear system for the case of mutually uncorrelated noise.
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e[ ]
Ely?]
E[yﬁ]
ELy21,
E[yzls

e
h(t)

H(w)
det(K)
Kg

Ky (w,t)
n(t)
p(¥,y)
'y

R, (1)

t

it
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NOMENCLATURE

envelope function
constants of the exponential envelope function

functions of the correlation function E[yZ], Elyyl,
and E{%2] defined by Eq. (2-29).

decay coefficients of the exponential envelope function.
normalization factor

expected value of [ 1.

time varying mean-square response

time varying mean-square response of the linear system.
stationary mean-square response of the linear system
stationary mean-square response of the nonlinear system

difference between a nonlinear system and itc equivalent
1inear system

impulse response function or weighting function of the
equivalent linear system

transfer function of the equivalent linear system
determinant of the correlation matrix

constant

modulation function due to unit step function
input random process

probabiiity density function

5i9=¢4

autocorrelation function of input noise n(t)

time
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= gnit step function

= modutation function due to exponential envelope function
= displacement response

= decay coefficient of noise correlation function

= frequency of noise correlation function

= equivalent linear damping

Dirac delta function

functions defined by Eq. (3-48). « = 1,2,...,4
constants defined by Eq. (2-52)

coefficients of the nonlinear terms of y(t)

system damping coefficient

= circular natural frequency of the corresponding lirear
system

equivaient 1inear stiffness

2 2

ne ~ Be

= power spectral density of input noise n{t)
= d( )/dt

=

= product
= m"t
= suytmation

= approximately equai to




[40]

REFERENCES

1. Caughey, T. K., and Stumpf, H. J., "Transient Response ¢f a
Dynamic System Under Random Excitaticn,” JOURNAL OF APPLIED
MECHANICS, Vol. 28, No. 4, Trans. ASME, Vol. 83, Series E.,
Dec., 1961.

2. Bolotin, V. V., "Statistical Methods in Structural Mechanics,"
Translated by S. Aroni, Holden-Day, Inc., San Francisco, 1969.

3. Barnoski, R. L., and Maurer, J. R., Mean-Square Response of
Simple Mechanical Systems to Nonstatiomary Random Excitation,"
JOURNAL OF APPLIED MECHANICS, Vol. 36, No. 2, Trans. ASME,
Vol. 91, Series E., June 1969.

4. Bucciarelli, L. L., Jr., and Kuo, C., "Mean-Square Response
of a Second-Order System to Nonstationary Random Excitation,”
JOURNAL OF APPLIED MECHANICS, Vol. 37, Ho. 3, Trans. ASME,
Vol. 92, Series E., Sept. 1970.

5. Toland, R. H., Yang, C. Y., and Hsu, C., "Non-Stationary Random
Vibration of Non-Linear Structures," International Journal of
Non-Linear Mechanics, VYol. 7, No. 4, 1972, pp. 395-406.

6. Booton, R. C., Jr., "The Analysis of Nonlinear Control Systems
with Random Inputs,” Proceedings of the Symposium on Nonlinear
Circuit Analysis, Vol. II, 1953.

7. Caughey, T. K., “Equivalent Linearization Techniques," JOURNAL
OF ACOUSTICAL S0CIETY OF AMERICA, Vol. 35, No. 11, Nov. 1963.

8. Papoulis, A., “Probability, Random Variables, and Stochastic
Processes,” McGraw-Hi11, Inc. 1965.

9. Gradshteyn, I. S., and Ryzhik, I. M., "Table of Integrals, Series,
and Products", Academic PRess, 1965.




e ST

(41]

§20°0=2 Putdweq wa3sAg

*uctIoUng dajs FTUN B AQ PIIWTAPOK ISTON d3ITYM 03 SITITISIUTTUON
SNCTAVA YITM BUWIIBAS IVBUTTUON oyl Jo Isuodsay aaenbs-uvel :1 8xnPig

L
YORL O oue | usz 102 ST 101 ug 0
- (3)u(3)n=(3)J
(2) I Al G0+ R+ LIz +4 . . \“\
\ ,
\ /
052 T=o 7
V\ \\ /
#04€ 0=l
Naoa.oa;uvr -
(wa384s IvauLT)O=r
S

)]
.
©

50

A ¢
3
o

8°90

(=}
.
-4

Oyu/fmm[ L2 evuodsoy exenbs-uwey pouITBEION




Al AR RO UITE LRSS

LTS L4

[42]

G0°0=9 Juidueg weisAs
‘uogioung dajs 3jun e Aq PIIVINPON ISTON &3TUM O} SITITIVRUTTUON
SNOTICA YITM SUI3B8AS JBSUTTUCN 943 Jo Isuodssy saenbs-uway 1z aundtg

m =l wT Lot ug

2 v L4

(3)u(3)n = (3)F
3:.:.&3;& I+ mnSuN + &

~

052 1=+

£0L€°0 = -
/\el\\

p——y
—— e — — —

eH0T*0 = LV\.\.\\

“-
-
‘I‘\ll-ll!‘\.ll
‘.IIII“II‘I.I‘

(we3sAS JwUTT) O =

2°C

4 QQO

$°0

8°0

o
L3
i

Oyu/Pmim «AJ8 eBuodssy exenbs-ueey pezyTr i |

Ty

, :
-
PN £




{43]

¥msy

01°0=% Jutdwwg weysfs cuofouny
do3g JTuUn ® AQ PAININDOK OBTON IITYM O SITITIBAUTTUON

SNOTIBA YL TA SWILEAS IBBUITUON U3 JO ssuodsaey sawnbs-uwdl :{ aInFTY

uwr 80T u5

Y

v

v v

L (Mu(ans()3
(3)3mehrgmehnesmgzas

0$2°T=n
////uur\

H©04E° 0=

/

ZH0T o=l

- - - - -

(we3sAs awauyy) 0=+

120

4 &Oc

$°0

{80

©
°
4

Oyu/com Az esucdsay slenbs-uvel pezjTBMION




[44])
| 0 0.6 v y . .
x {c | F+26u yruly+poly =1(t)
§ £{t)=n(t)a(t)
y 0.5 A(t)=e0 02t
L) .
g \\ \_ =0 (Linear System)
2 ol : . ST
L
-
z [}
g )“3003?“
€  o.3} { \
g H | | " | | ‘ r=1.250
b \ ‘
:"4 002 1 .
4
g & | Envelope
k] Function N
i iA(t)a*'-Ooczsf “\,
; 001 s \.
! \\.
j \\\\\.-55~‘
L I —
| ; 0 an on 12n 26m 20

'T-(Onf

Figure 4: Mean-square Response of the Nonlinesr System
to White Noise Modulated byExponentisl
Envelope Function. System Damping 6=0.05
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APPENDIX

Computation of E[yyzm*II and E[y2m+2]

rﬂ (ﬂ
EGy™ '] s —L— 3™ Vexp(-ay2+2byy-c3? ) dydy

2n[det(K) ¥ |
Sl it

- 1
v S B R

- -8

22
Y ) Z (2'!’”\);] ,2\’) ( a )\)°°2de (1)

X exp(b
wher;
(2mt13-132v) = (2me1)(2m)(2m-) ... (2m-20+1) v=1,2,--

and

(2m1;-130) =1

o 2mt i 7 b2l 1 % w1l
E S—— I
by 2n[det(K) ] : @) ‘( a
m
[ mopmr @03 )"]1-—2;;)—« (2)
where

o = (ac-bz)/a
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Noting that

m( )m-v( ) ("""fz')m

€q. (2) reduces to

ELyy2™1] = (E[y2])™ E[yy] 1221L! (3)
Pt
£y2™2] o ] ("

22, o Qe o2y e
oLt J [y exp(-ay“+2byy-cy“)dydy

- 00 e 00

.l by 21 by, 2mi2
 iaet i expl(-c+ Y1

n
1 (2!“'2 l ,2\,) a '-2\)
"y a v'O vi ( 2) dy

- (Epy2y™ L2l
2* m! (4)
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